[1]熊彬,贺春林,周坤.一种基于自适应学习率的推荐优化算法模型[J].西华师范大学学报(自然科学版),2019,40(02):197-203.[doi:10.16246/j.issn.1673-5072.2019.02.015]
 XIONG Bin,HE Chunlin,ZHOU Kun.A Recommend Optimization Algorithm Model Based on Adaptive Learning Rate[J].Journal of China West Normal University(Natural Sciences),2019,40(02):197-203.[doi:10.16246/j.issn.1673-5072.2019.02.015]
点击复制

一种基于自适应学习率的推荐优化算法模型

()
分享到:

《西华师范大学学报(自然科学版)》[ISSN:1673-5072/CN:51-1699/N]

卷:
40
期数:
2019年02期
页码:
197-203
栏目:
出版日期:
2019-06-20

文章信息/Info

Title:

A Recommend Optimization Algorithm Model Based on Adaptive Learning Rate

作者:

熊彬贺春林周坤

(西华师范大学 计算机学院,四川 南充637009)

Author(s):

XIONG BinHE ChunlinZHOU Kun

(College of Computer Science,China West Normal University,Nanchong Sichuan 637009,China)

关键词:

随机梯度下降自适应学习率高维稀疏矩阵推荐系统

Keywords:

stochastic gradient descentadaptive learning ratehigh-dimensional sparse matrixrecommender system

分类号:
TP391
DOI:
10.16246/j.issn.1673-5072.2019.02.015
文献标志码:
A
摘要:

在预测推荐系统中用户和项目构成的高维稀疏矩阵中的缺失值时,通常采用随机梯度下降算法对构造的隐因子(LF)模型进行求解,由于在求解过程中,学习速率始终保持不变,这使得在模型训练过程中模型的性能有所损失。因此,本文将构造一种带有自适应学习率的随机梯度下降算法的LF模型(ADA_LF)来处理推荐系统中的高维稀疏矩阵。采用大型工业数据集对模型进行实验测试,结果表明,采用ADA_SGD算法构建的LF模型在收敛速率、预测精度上都有明显提升,提高了模型的性能。

Abstract:

In the prediction of missing value of recommender system with highdimensional sparse matrix formed by users and items,Stochastic Gradient Descent algorithm is usually adopted to solve the latent factor (LF) model.However,model performance loss in the process of model training is occurred as a result of constant learning rate in the solution process.Hence,this paper proposes a stochastic gradient descent algorithm model with adaptive learning rate (ADA_SGD) to dispose highdimensional sparse H of recommender system.Experimental tests of the model on large industrial data sets show that LF model constructed by ADA_SGD algorithm has greatly improved on convergence rate and prediction accuracy.Therefore,the performance of the model is greatly improved.

备注/Memo

备注/Memo:

收稿日期:2018-09-04
基金项目:四川省教育厅重点项目 (15ZA048);西华师范大学英才基金资助课题(17YC150);国家级大学生创新创业训练计划(201510638047)
作者简介:熊彬(1993—),男,四川成都人,硕士研究生,主要从事数据挖掘、机器学习研究。E-mail:xiongbin_wy@163.com
通信作者:贺春林(1971—),男,四川广安人,教授,主要从事数据挖掘与图像处理研究。E-mail:chunlin_he@163.com

更新日期/Last Update: 2019-06-25