[1]马世贵,叶明露.ICR函数与DICR函数的抽象凸性分析[J].西华师范大学学报(自然科学版),2017,38(01):87-91.[doi:10.16246/j.issn.1673-5072.2017.01.015]
 MA Shigui,YE Minglu.Abstract Convex Analysis of ICR and DICR Functions[J].Journal of China West Normal University(Natural Sciences),2017,38(01):87-91.[doi:10.16246/j.issn.1673-5072.2017.01.015]
点击复制

ICR函数与DICR函数的抽象凸性分析()
分享到:

《西华师范大学学报(自然科学版)》[ISSN:1673-5072/CN:51-1699/N]

卷:
38
期数:
2017年01期
页码:
87-91
栏目:
出版日期:
2017-03-20

文章信息/Info

Title:
Abstract Convex Analysis of ICR and DICR Functions
作者:
马世贵 叶明露
(西华师范大学 数学与信息学院,四川 南充637009)
Author(s):
MA ShiguiYE Minglu
(College of Mathematics and Information,China West Normal University,Nanchong Sichuan 637009,China)
关键词:
ICR函数DICR函数抽象凸性
Keywords:
ICR functionDICR functionabstract convexity
分类号:
O221
DOI:
10.16246/j.issn.1673-5072.2017.01.015
文献标志码:
A
摘要:
在拓扑向量空间中研究函数φ:X×X×R++[0,+∞],φ(x,y,α):=sup{λ:0λα,λxy},这里x,y∈X,α∈R++。证明该函数关于第一变元是DICR函数,关于第二变元是ICR函数,并分别研究这两类函数的抽象凸性。
Abstract:
In this paper,the study of φ:X×X×R++→[0,+∞] function defined by φ(x,y,α):=sup {λ:0λα,λxy},x,y∈X,α∈R++ is conducted in a topological vector space.Function φ is proved to be DICR function in the first argument and ICR function in the second argument. In addition,the abstract convexity of both two functions is also discussed.

参考文献/References:


[1]MART NEZLEGAZ J E,RUBINOV A M,SCHAIBLE S.Increasing quasiconcave coradiant functions with applications in mathematical economics[J].Mathematical Methods of Operations Research.2005,61(2):261-280.
[2]DUTTA J,MARTNEZLEGAZ J E,RUBINOV A M.Monotonic analysis over cones:Ⅲ[J].Journal of Convex Analysis.2008,15(3):561-579.
[3]MOHEBI H,SADEGHI H.Monotonic analysis over ordered topological vector spaces:Ⅱ[J].Optimization.2009,58(2):241-249.
[4]RUBINOV A M,GLOVER B M.Increasing convexalongrays functions with application to global optimization[J].Journal of Optimization Theory and Applications.1999,102(3):615-642.
[5]MIRZADEH S,MOHEBI H.Abstract Concavity of Increasing Coradiant and QuasiConcave Functions with Applications in Mathematical Economics[J].Journal of Optimization Theory and Applications.2016,169(2):443-472.
[6]DUTTA J,MARTNEZLEGAZ J E,RUBINOV A M.Monotonic analysis over cones:Ⅰ[J].Optimization.2004,53(2):129-146.
[7]DUTTA J,MARTNEZLEGAZ J E,RUBINOV A M.Monotonic analysis over cones:Ⅱ[J].Optimization.2004,53(56):529-547.
[8]MOHEBI H,SAMET M.Abstract convexity of topical functions[J].Journal of Global Optimization.2014,58(2):365-375.
[9]RUBINOV A M.Abstract convexity and global optimization[M].Dordrecht:Kluwer Academic Publishers,Dordrecht 2000.
[10]ROCKAFELLAR R T.Convex analysis[M].Princeton :Princeton university press,1970.
[11]PALLASCHKE D.Foundations of mathematical optimization:convex analysis without linearity[M].Dordrecht: Kluwer Academic Publishers,1997.
[12]DOAGOOEI A R,MOHEBI H.Monotonic analysis over ordered topological vector spaces:Ⅳ[J].Journal of Global Optimization,2009,45(3):355-369.
[13]ZHAN T,LI J.Abstract convex analysis for topical and nontopical functions[J].Transactions on Mathematical Programming and Applications,2013,1:45-58.

备注/Memo

备注/Memo:

收稿日期:2016-10-08基金项目:国家自然科学基金( 11371015);教育部科学技术重点项目(211163);四川省青年科技基金(2012JQ0035)
作者简介:马世贵(1993—),女,四川宜宾人,硕士研究生,主要从事优化理论及应用研究。
通信作者:叶明露(1975—),男,重庆渝北人,博士,副教授,主要从事优化理论及应用研究。E-mail: yml2002cn@126.com
引用本文:马世贵,叶明露.ICR函数与DICR函数的抽象凸性分析[J].西华师范大学学报(自然科学版),2017,38(1):87-91.[MA Shigui,Ye Minglu.Abstract convex analysis of ICR and DICR functions[J].Journal of China West Normal University(Natural Sciences),2017,38(1):87-91.]ICR函数与DICR函数的抽象凸性分析
更新日期/Last Update: 2017-03-20