[1]黄冬梅.混合变分不等式的变分原理[J].西华师范大学学报(自然科学版),2016,37(03):297-302.[doi:10.16246/j.issn.1673-5072.2016.03.012]
 HUANG Dongmei.Variational Principles for Mixed Variational Inequalities[J].Journal of China West Normal University(Natural Sciences),2016,37(03):297-302.[doi:10.16246/j.issn.1673-5072.2016.03.012]
点击复制

混合变分不等式的变分原理()
分享到:

《西华师范大学学报(自然科学版)》[ISSN:1673-5072/CN:51-1699/N]

卷:
37
期数:
2016年03期
页码:
297-302
栏目:
出版日期:
2016-08-20

文章信息/Info

Title:
Variational Principles for Mixed Variational Inequalities
作者:
黄冬梅
(西华师范大学 数学与信息学院,四川 南充637009)
Author(s):
HUANG Dongmei
(College of Mathematic and Information,China West Normal University,Nanchong Sichuan 637002,China)
关键词:
变分不等式混合变分不等式变分原理
Keywords:
variational inequalitymixed variational inequalityvariational principle
分类号:
O221
DOI:
10.16246/j.issn.1673-5072.2016.03.012
文献标志码:
A
摘要:
描述并分析了有限维空间中混合变分不等式的变分原理,同时给出了混合变分不等式的解基于鞍点的刻画,最后,针对一些特殊情型给出了混合变分不等式问题基于经典优化问题的等价性刻画。因为线性,非线性补问题也可纳入混合变分不等式问题的框架,所以文章中得到的结果也可以直接用于这类问题。
Abstract:
The theory of mixed variational inequality problems has wide applications in economics,finance,optimization and game theory.This paper describes and analyzes variational principles for the solution of mixed variational inequalities on closed convex sets in finite dimensional Euclidean spaces.A saddle point characterization of the solution is also given.Some special cases are also given to illustrate mixed variational inequalities.Since linear,and nonlinear complementarity problems may be framed as mixed variational inequalities,this theory also applies to such problems.

相似文献/References:

[1]李涵,杨丽,李军.伪单调变分不等式的次梯度外梯度投影算法[J].西华师范大学学报(自然科学版),2016,37(02):189.[doi:10.16246/j.issn.1673-5072.2016.02.012]
 LI Han,YANG Li,LI Jun.A Subgradient Exgradient Projection Method for Pseudomonotone Variational Inequalities[J].Journal of China West Normal University(Natural Sciences),2016,37(03):189.[doi:10.16246/j.issn.1673-5072.2016.02.012]
[2]史杰,何中全.Banach空间中一类变分不等式近似解研究[J].西华师范大学学报(自然科学版),2011,32(04):326.[doi:10.16246/j.issn.1673-5072.2011.04.019]
 SHI Jie,HE-Zhong quan.On the Approximate Solutions of A Class of Variational Inequalities in Banach Spaces[J].Journal of China West Normal University(Natural Sciences),2011,32(03):326.[doi:10.16246/j.issn.1673-5072.2011.04.019]
[3]叶明露,刘云程.解伪单调变分不等式的一种修正投影算法[J].西华师范大学学报(自然科学版),2017,38(02):162.[doi:DOI:10.16246/j.issn.1673-5072.2017.02.009]
 YE Minglu,LIU Yuncheng.A Modified Projection Method for Solving Pseudomonotone Variational Inequality[J].Journal of China West Normal University(Natural Sciences),2017,38(03):162.[doi:DOI:10.16246/j.issn.1673-5072.2017.02.009]

备注/Memo

备注/Memo:
收稿日期:2015-12-26
基金项目:国家自然科学基金项目(11371015);教育部科学技术重点项目(211163);四川省青年科技基金(2012JQ0035)
作者简介:黄冬梅(1980—) , 女, 湖北荆州人,讲师,主要从事优化理论及应用研究。
通讯作者:黄冬梅,E-mail: huangdmmath@163.com
更新日期/Last Update: 2016-09-20