[1]史杰,何中全.Banach空间中一类变分不等式近似解研究[J].西华师范大学学报(自然科学版),2011,32(04):326-330.[doi:10.16246/j.issn.1673-5072.2011.04.019]
 SHI Jie,HE-Zhong quan.On the Approximate Solutions of A Class of Variational Inequalities in Banach Spaces[J].Journal of China West Normal University(Natural Sciences),2011,32(04):326-330.[doi:10.16246/j.issn.1673-5072.2011.04.019]
点击复制

Banach空间中一类变分不等式近似解研究()
分享到:

《西华师范大学学报(自然科学版)》[ISSN:1673-5072/CN:51-1699/N]

卷:
32
期数:
2011年04期
页码:
326-330
栏目:
出版日期:
2011-12-20

文章信息/Info

Title:
On the Approximate Solutions of A Class of Variational Inequalities in Banach Spaces
作者:
史杰;何中全;
西华师范大学数学与信息学院;
Author(s):
SHI JieHE-Zhong quan
( College of Mathematics and Information,China West Normal University,Nanchong,637002)
关键词:
迭代算法变分不等式收敛性
Keywords:
iteration algorithm variational inequality convergence
分类号:
O177. 91
DOI:
10.16246/j.issn.1673-5072.2011.04.019
文献标志码:
A
摘要:
研究了光滑Banach空间中一类变分不等式问题.引入了一种新的迭代算法,讨论了由迭代算法构造的迭代序列的收敛性,并据此得到了一个这类变分问题近似解的收敛定理.本文的工作推广和改进了一些文献中的最新结果.
Abstract:
In this paper,some variational inequality problems are studied and a new iterative algorithm is introduced in smooth Banach spaces. The Convergence theorem of this iterative algorithm is obtained. The results obtained in this paper extend corresponding works of others.

参考文献/References:


[1] XU H K. Inequalities in Banach Spaces with Applications,Nonlinear Analysis,16 ( 1991) ,1127 - 1138.
[2] ALBER YA. Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications,Theory and Applications of Nonlinear Operators of Accretive and Monotone Type ( A. G. Kartsatos Ed. ) ,Leture Notes in Pure and Appl. Math. , Vol. 178,Dekker,NewYork,1996,pp. 15 - 50.
[3] KAMIMURA S,TAKAHASHI W. amimura S,Takahashi W. Strong Convergence of Proximal - type Algorithm in a Banach Space,SIAM J. Optim. 13( 2002) ,938 - 945.
[4] ALBER YA. Metric,Generalized Projection Operators in Banach Spaces: Properties and Applications,Theory and Applications of Nonlinear Operators of Accretive and Monotone Type ( A. G. Kartsatos Ed. ) ,Leture Notes in Pure and Appl. Math. ,Vol. 178,Dekker,NewYork,1996,pp. 15 - 50.
[5] ROCKFELLAR R T. Monotone Operators and the Proximal Point Algorith,SIAM J. Control and Optim. 14 ( 1976) ,877 - 898.
[6] ALBER YA. Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications,Theory and Applications of Nonlinear Operators of Accretive and Monotone Type ( A. G. Kartsatos Ed. ) ,Leture Notes in Pure and Appl. Math. , Vol. 178,Dekker,NewYork,1996,pp. 15 - 50.
[7] HABTU ZEGEYE,ERIC U. OFOEDU,Naseer Shahzad,Convergence Theorems for Equilibrium Problem,Variotional Inequality Problemand Countably Infinite Relatively Quasi - nonexpansive Mappings,Appl. Math. Comput,26 February 2010.
[8] 倪仁兴. Mann 迭代和具误差的Iahikawa 迭代收敛性的等价定理[J]. 高校应用数学学报,2010,25( 3) : 359 - 364.
[9] 李小玲. k -强增生映射的4 种迭代收敛程序的等价性[J]. 南昌工程学院学报,2010,29( 4) : 12 - 15.

相似文献/References:

[1]李涵,杨丽,李军.伪单调变分不等式的次梯度外梯度投影算法[J].西华师范大学学报(自然科学版),2016,37(02):189.[doi:10.16246/j.issn.1673-5072.2016.02.012]
 LI Han,YANG Li,LI Jun.A Subgradient Exgradient Projection Method for Pseudomonotone Variational Inequalities[J].Journal of China West Normal University(Natural Sciences),2016,37(04):189.[doi:10.16246/j.issn.1673-5072.2016.02.012]
[2]黄冬梅.混合变分不等式的变分原理[J].西华师范大学学报(自然科学版),2016,37(03):297.[doi:10.16246/j.issn.1673-5072.2016.03.012]
 HUANG Dongmei.Variational Principles for Mixed Variational Inequalities[J].Journal of China West Normal University(Natural Sciences),2016,37(04):297.[doi:10.16246/j.issn.1673-5072.2016.03.012]
[3]杨柳,刘汉奎,郝希准,等.一种改进的基于DCT的信道估计迭代算法[J].西华师范大学学报(自然科学版),2011,32(01):67.[doi:10.16246/j.issn.1673-5072.2011.01.005]
 YANG Liu,LIU Han-kui,HAO Xi-zhun,et al.An Improved DCT-based Iterative Algorithm for Channel Estimation[J].Journal of China West Normal University(Natural Sciences),2011,32(04):67.[doi:10.16246/j.issn.1673-5072.2011.01.005]
[4]何中全,高大鹏.一类似变分包含组问题的强收敛定理[J].西华师范大学学报(自然科学版),2011,32(04):321.[doi:10.16246/j.issn.1673-5072.2011.04.018]
 HE Zhong-quan,GAO Da-peng.Strong Convergence Theorems for Systems of Variational-like Inclusion Problems[J].Journal of China West Normal University(Natural Sciences),2011,32(04):321.[doi:10.16246/j.issn.1673-5072.2011.04.018]
[5]何中全.一类似变分包含组解的存在性与迭代算法[J].西华师范大学学报(自然科学版),2009,30(01):41.[doi:10.16246/j.issn.1673-5072.2009.01.002]
 HEZhong-quan.ASystem ofNonlinearVariational-LikeInclusionsand ApproximationAlgorithm[J].Journal of China West Normal University(Natural Sciences),2009,30(04):41.[doi:10.16246/j.issn.1673-5072.2009.01.002]
[6]高大鹏,冯世强,何中全,等.关于广义非线性隐似变分包含问题(英文)[J].西华师范大学学报(自然科学版),2009,30(04):345.[doi:10.16246/j.issn.1673-5072.2009.04.001]
 GAODa-peng,FENGShi-qiang,HEZhong-quan.OnGeneralizedNonlinearImplicit Variational-LikeInclusionsProblems[J].Journal of China West Normal University(Natural Sciences),2009,30(04):345.[doi:10.16246/j.issn.1673-5072.2009.04.001]
[7]叶明露,刘云程.解伪单调变分不等式的一种修正投影算法[J].西华师范大学学报(自然科学版),2017,38(02):162.[doi:DOI:10.16246/j.issn.1673-5072.2017.02.009]
 YE Minglu,LIU Yuncheng.A Modified Projection Method for Solving Pseudomonotone Variational Inequality[J].Journal of China West Normal University(Natural Sciences),2017,38(04):162.[doi:DOI:10.16246/j.issn.1673-5072.2017.02.009]
[8]何中全.一类变分不等式解的稳定性[J].西华师范大学学报(自然科学版),1997,18(02):110.[doi:10.16246/j.issn.1673-5072.1997.02.006]

备注/Memo

备注/Memo:

收稿日期: 2011 - 03 - 01
基金项目:四川省教育厅重点课题基金资助项目( 项目编号: 08ZA159) .
作者简介:史杰( 1986 - ) ,男,湖北孝感人,西华师范大学数学与信息学院硕士研究生,主要从事非线性分析研究.
通讯作者:何中全( 1955 - ) ,男,四川南充人,西华师范大学数学与信息学院教授,主要从事非线性分析研究.
更新日期/Last Update: 2011-12-20