[1]肖冬雪,崔泽建.一类拟线性椭圆方程的爆破解[J].西华师范大学学报(自然科学版),2013,34(03):301-305.[doi:10.16246/j.issn.1673-5072.2013.03.017]
 XIAO Dong-xue,CUI Ze-jian.Blow-up Boundary Solution of a Quasilinear Elliptic Equation[J].Journal of China West Normal University(Natural Sciences),2013,34(03):301-305.[doi:10.16246/j.issn.1673-5072.2013.03.017]
点击复制

一类拟线性椭圆方程的爆破解()
分享到:

《西华师范大学学报(自然科学版)》[ISSN:1673-5072/CN:51-1699/N]

卷:
34
期数:
2013年03期
页码:
301-305
栏目:
出版日期:
2013-09-20

文章信息/Info

Title:
Blow-up Boundary Solution of a Quasilinear Elliptic Equation
作者:
肖冬雪;崔泽建;
西华师范大学数学与信息学院;
Author(s):
XIAO Dong-xueCUI Ze-jian
( College of Mathematic and Information,China West Normal University,Nanchong, 637009,China)
关键词:
爆破整体爆破拟线性椭圆方程解的存在性.
Keywords:
large solution entire large solution quasilinear elliptic equation existence of solution.
分类号:
O175.25
DOI:
10.16246/j.issn.1673-5072.2013.03.017
文献标志码:
A
摘要:
对于椭圆方程Δp u=m(x)f(u)已经在许多文章中给出了解的边界爆破性的充分条件甚至是充要条件.作者在本文中主要研究椭圆方程Δp u+|▽u|p-1=m(x)f(u),克服了扰动项|▽u|p-1的影响并且分别得到了该方程解的存在性与解的边界爆破的充分条件.
Abstract:
Elliptic equation has been given the sufficient conditions even the necessary and sufficient conditions inmany articles. In this paper,the author referred to the study of the equation,overcame the influence of perturbationterms and obtained the existence of the solution and the sufficient condition of the blow-up boundary solution.

参考文献/References:


[1] PENG W H,WANG Y G. Large Solution of a Semilinear Elliptic Problem[J],Computer and Mathe—Matics With Applications2005( 49) : 1381 - 1395.
[2] AMZOIU M. Blow-up Boundary Solutions for Quasilinear Anisotropic Equations[J],An,Stiin爫. Univ.“Ovidius”' Constan爫a Ser.Mat. 2010, 18( 1) : 35 - 47.
[3] CRSTEA F ,RADULESCU V D,Blow-up Boundary Solutions of Semilinear Elliptic Problems[J],Nonlinear Analysis. 2002, 48( 2) : 521 - 534.
[4] DYNKIN E B. A Probabilistic Approach to a Class of Nonlinear Evolution Equation[J],Probob. Theary Related. 1991( 89) : 89 -115.
[5] GIDAS B,NI W M L. Symmetry and Related Properties Via the Maximum Principle[M],Comm. Math. Phys. 1979( 68) : 209 -243.
[6] CRSTEA F ,RADULESCU V D. Uniqueness of the Blow-up Boundary Solutions of Logistic Equation With Absorbtion[J],C. R.Acad. Sci. Paris,Ser. I. 2002( 335) : 477 - 452.
[7] COVEI. Existence and Uniqueness of Positive Solutions to a Quasilinear Elliptic Problem [J],Electronic Journal of DifferentialEquations. 2005, 39( 1) : 1 - 15.

相似文献/References:

[1]李佳贤,杜宛娟.带有Neumann边界条件和非局部反应项的非局部扩散方程的爆破[J].西华师范大学学报(自然科学版),2015,36(04):331.[doi::10.3969/j.issn.1673-5072.2015.04.002]
 LI Jiaxian,DU Wanjuan.Blowup for A Non-local Diffusion Problem with Neumann Boundary Conditions and A Non-local Reaction Term[J].Journal of China West Normal University(Natural Sciences),2015,36(03):331.[doi::10.3969/j.issn.1673-5072.2015.04.002]
[2]朱旭生,赵康鑫,傅春燕.维欧拉方程组初边值问题经典解的爆破[J].西华师范大学学报(自然科学版),2016,37(04):407.[doi:10.16246/j.issn.1673-5072.2016.04.009]
 ZHU Xusheng,ZHAO Kangxin,FU Chunyan.Blowup of the Classical Solutions for the IBVP of the ndimensional Euler Equations[J].Journal of China West Normal University(Natural Sciences),2016,37(03):407.[doi:10.16246/j.issn.1673-5072.2016.04.009]
[3]罗显康,崔泽建.一类非线性Klein-Gordon方程整体解的存在性和爆破性[J].西华师范大学学报(自然科学版),2010,31(02):200.[doi:10.16246/j.issn.1673-5072.2010.02.005]
 LUOXian-kang,CUIZe-jian.OnGlobalExistenceandBlow-upofSolutionsforaClassof NonlinearKlein-GordonEquations[J].Journal of China West Normal University(Natural Sciences),2010,31(03):200.[doi:10.16246/j.issn.1673-5072.2010.02.005]
[4]李娟.带时间积分的P-Laplace方程解的性质[J].西华师范大学学报(自然科学版),2010,31(03):259.[doi:10.16246/j.issn.1673-5072.2010.03.002]
 LIJuan.PropertiesoftheSolutiontoaP-LaplacianEquationwithNonlocal SourcesandAbsorptions[J].Journal of China West Normal University(Natural Sciences),2010,31(03):259.[doi:10.16246/j.issn.1673-5072.2010.03.002]

备注/Memo

备注/Memo:

收稿日期: 2012 - 11 - 08
基金项目: 四川省教育厅自然科学重点项目基金资助( 09ZA119)
作者简介: 肖冬雪( 1987 - ) ,男,四川自贡人,西华师范大学数学与信息学院硕士研究生,主要从事偏微分方程研究.
通讯作者: 崔泽建( 1963 - ) ,男,四川南充人,西华师范大学数学与信息学院教授,主要从事偏微分方程研究.
更新日期/Last Update: 2017-12-28